DTI® FILE COPY -

Q

1O

:"o CENTER FOR SOFTWARE ENGINEERING

N ADVANCED SOFTWARE TECHNOLOGY H
h

o]

-

Subject: Final Report - Real-Time Ada Performance
Benchmarks: Execution Results

CIN: C02 092LY 0004 00
. 23 July 1990

REPORT DOCUMENTATION PAGE %m&m

Pubilc :‘ N d'; bdw:)wymwmmmn-mum-m; a- patunng and
for : . Directorase for information Operations 2 untmn u e '
..nmua umumarmmnpnn-m%==‘ o . du%c -wﬂaumiliuummbuhﬂqu Afngron, e w
1. AGENCY USE ONLY (Lesve Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
23 July 1990 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Real-Time Ada Performance Benchmarks: Execution Results F30602-86~C-0111
8. AUTHOR(S)

Arvind Goel

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORX

Unixpros Inc.

16 Birch Lane

Colts Neck, NJ 07722
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
U.S. Army HQ CECOM REPORT NUMBER

Center for Software Engineering

Fort Monmouth, NJ 07703-5000
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION CODE

STATEMENT A UNLIMITED

1
13, ABSTRACT (Maximum 200 words)
!

\
t

") A set of real-time performance benchmarks were previously developed by CECOM to
measure the performance of individual Ada features, to detcrmine Ada runtime system
implementation dependencies, and o deternnine ihe performance of paradigms found in real-time
systems. This task transported the benchmarks to other environments and listed the results after
running them. Using the DDC-I Ada cross compiler system hosted on a MicroVax II and targeted
to the Inte] 80X86 family of microprocessors, results were obtained. Also the results of running
the benchmarks on a HP 9000/350 computer, using two versions of the self-hosted HP Ada
compiler (HP3.25 and HP4.35) running under HP-UX, are presented. / / S) /

14, SUBJECT TERMS 15.Nu~|385£aor PAGES
Ada, benchmarks, real-time
16. PRICE CODE
o CURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 16. SECURITY CL. ASS!FICATDON 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFILED UNCLASSIFIED UNCLASSIFIED UL
280 6. (rev. 2-89
NSN 7540-01-280-5500 Stancard Fom 20 e 289
2050

_

F 4 LY

GENERAL INSTRUCTIONS FOR ZOMPLETING SF 298
Trs Report Documentation Fage (RDP) is used in announcing and catalogin: redorts. It is important
thz: this information be consistent with the rest of the report, particularly thc¢ coves and titie page.
In-‘ruct'ons for fillirZ in each biock of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agenzy Use Only (L eave blank). Block 12a. Distribution/Aveilability & atement.
o Denotes public availability or limitations. Cite
Block 2. Bepad Dale. Full publication date any availability to the public. Enter addition.i

including day, month, and year. it available (e.~.
1 Jan 88). Must cite at least the yea'.

Block 3. Typr of Report and Dates Covered
State whether report is interim, final, etc. it

DOD - See DoDD 5230.24, "Chstrinution
ﬁ'gbl&?}?ﬁr&'&cluswe report dates (¢.g. 10 S:-lements on Technical

o gocumen!:.'

; M E - See authorities.

Block 4. Title and Subtitle. A title is taker from _ c

the part of the report thia! provides the most s,f_‘éA - .Eee H%TUDEOK NHE 2200.2.
meaningfu! and complete intarmaticn. Wnen a - Leave Diank.

report is prepared in more than one volume,
repeat the primary ttle, add volume number,
and include subtitle for tn. specific volume. On Block 12b. Distribution Code.
classified documents enter the titie
classification in parenthesec.

limitations or special markings in ali cap:.als
(e.g. NOFORN, REL, ITAR,.

DOD - DOD - Leave blank.

-) Ao o .

Block 5. Funding Numbhers. To incluge contract | POE - DOE - Enter DOE distribution ¢ iegories
; : ; trom the Standard Distribution to:

and grant numbers; may include program Unclassifiec Scientific anc Technic: .

element number(s), project number(s), task

i Reports.
number(s), and work unit number(s). Use the -
toliowing iabels: NASA - NASA - {eave blank.

NTIS - NTIS -!eave blank.

C - Contract PR - Projiect
G - Grant TA - Task Block 13. Ahstract, Include a brie! (Maximum
PE - Ei'gr%rffw wu- X\‘ggsgg; No 200 words) factuza. summary of the most
) significant information contained in the report.

Block 6. Authorls'. Name(s) ¢! person(s)
responsible for writing the repon, performing Blocl: 14. Qubject Terms. Kevwerds ¢ phrases
the research, or credited with the content of the identifying maior subjects in ine repent.
report. If editor or compiler, this should follow
the name(s). Elock 15. Number of Pages, Enter thie tota:
Block 7. Pedorming Organizzti) \ number of pages.
Address(es) Seif-expianatory. , ' . ,

Elock 16. Price Code, Enter appropriate price '
Block 8. Pedormizz Organization Seport code (INTIS only). '
Number Enter the unique aiphanumeric report
number(s) assigned by the organization Blocks 17. - 18. Security Classificztions
performing the repor:. Seli-explanatory. Enter U.S. Security
Biock 9. SDQD&QUDQ_MQDMQAQSDSX Classification in accordance with U.S. Security
Name(s! and Address(es). Self-explanatory. Regulations (i.e., UNCLASSIFIED). If form

contains classifiec information, stamp
Block 10. Sponsoring/Monitaring Agency classification on the top and bottom of the page.

FReport Number. (If known)

B ; . Block 20. Limitation ol Abcstract This block
ock 11. Supplementary Notes. Enter must be completec 1o assign & limitation to the

information not inclucal olzawheie such as:

Prepared in cooperation wii1...; Trans. of...; To apstract. Enter either UL {unlimited) or SAR
be published in.... When a report is revised., (same as repori). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the o!der repon. b!ank, the abstract is assumec 12 be unlimited.

Sianczacz Formr 208 Eack /Rev. 2-ES

—

Real-Time Ada Performance Benchmarks:

Execution Results

Prepared For:

U.S. Army CECOM
Advanced Software Technology
Center for Software Engineering
Fort Monmouth, NJ 07703-5000

Prepared By:

Unixpros Inc.
16 Birch Lane
Colts Neck, NJ 07722

July 10, 1990.

Real-time Ada Performance Benchmarks:

Execution Results

Executive Summary

This report documents the results from running the Real-time Ada
Performance Benchmarks on the Intel 80386 computer using the DDC-I
Ada compiler system hosted on a MicroVax II and targeted to Intel 8086
family of microprocessors. Results of running the benchmarks on a HP
9000/350 computer using the self-hosted HP Ada compiler running
under HP-UX are also listed in the Appendix. A brief discussion of the
benchmarks and test environment is followed by listing of the results
obtained.

{ deeesslon For

NTIS GRA&I

DTIC TAB
Unannounced O

Justification

By
| Distributionf

| _Avalladllity Codes |
Avall andgor

Diat Spea'ny

e [
w

CONTENTS

Introduction 0 e e e

. Real-time Benchmarks . . .
2.1 Measure Performance Of Ind1v1dual Features . o
2.2 Determining Runtime System Implementation

2.3 Real-time Paradigms
. Organization of the Real-time Benchmarks . . .

3.1 Micro

32 rts .

3.3 paradigms .

. Benchmark Execution on DDC-I Ada Compiler
4.1 Testbed Hardware and Software .
4.2 Microscopic Benchmarks
42.1 Tasking
4.2.1.1 Task Actlvatlon/Termmanon .
4.2.1.2 Task Synchronization
4.2.2 Memory Management
4.2.3 Exceptions .
4.2.4 Chapter 13 Benchma.rks .
4.2.5 Clock Function and TYPE Duratlon .
4.2.6 Numeric Computation
4.2.7 Subprogram Overhead
428 Pragmas
429 Input/Output
4.3 Runtime Implementation Benchmarks
4.3.1 Tasking Implementation Dependencies
4.3.2 Task Synchronization
4.3.3 Scheduling and Delay Statement
434 Memory Management . .
4.3.5 Asynchronous I/O
4.4 Real-Time Paradigms

. Conclusions .
Appendix A: Executlon Results For the HP Ada Compller

0O 00 00 00O IO, W WLWW N

p—t
=)

BB &

30
38
40
40

41
43

KRS

47
50

TABLE 1.
TABLE 2.

TABLE 3.
TABLE 4.
TABLE 5.
TABLE 6.
TABLE 7.
TABLE 8.
TABLE 9.
TABLE 10.
TABLE 11.
TABLE 12.
TABLE 13.
TABLE 14.
TABLE 15.
TABLE 16.
TABLE 17.
TABLE 18.
TABLE 19.
TABLE 20.

TABLE 21.

LIST OF TABLES

Task/Activation Termination Benchmarks .

Simple Rendezvous Benchmarks (No Parameters
Passed) . . « « ¢« « « ¢ ¢ o « &

Complex Rendezvous Benchmarks

More Rendezvous Benchmarks

Dynamic Allocation:Storage Allocated Is Fixed
Dynamic Allocation:Storage Allocated Is Variable
Dynamic Allocation with NEW Allocator

NEW Allocator:No Storage Deallocation

NEW Allocator:Active Tasks =5
NEW Allocator:Active Tasks = 10

Exception Raised and Handled in Block . . .
Exception Raised and Handled One Level Above .
More Exception Handling Benchmarks
Tasking_Error Exception Benchmarks

Chapter 13 Benchmarks
CLOCK FunctionTests
TIME and DURATION Mathematics

Numeric Computation Benchmarks
Subprogram Overhead (Intra-Package) . . .

Subprogram Overhead (Intra-Package with Pragma

Subprogram Overhead (Inter-Package)

-1 -

ER R RBEBRN

= &8 8 8 Y3

33
35

TABLE 22.

TABLE 23.

TABLE 24.
TABLE 25.
TABLE 26.
TABLE 27.
TABLE 28.
TABLE 29.
TABLE 30.
TABLE 31.
TABLE 32.

TABLE 33.
TABLE 34.
TABLE 35.

TABLE 36.

TABLE 37.

TABLE 38.
TABLE 39.
TABLE 40.
TABLE 41.

TABLE 42.

Subprogram Overhead (Intra-Package With generic
Instantiation) . .+ « + « + ¢ 4 . e . .

Subprogram Overhead (Inter-Package With Generic
Instantiation)« « .+ ¢

Pragma Benchmarks
Input/Output Benchmarks . .

Tasking Implementation Penchmarks . .
Rendezvous Implementation Benchmarks

Scheduling and Delay Statement Dependencies
Memory management Dependencies .

Real-time Paradigms .

HP Results: Task/Activation Termination Benchmarks

HP Results: Simple Rendezvous Benchmarks (No Parameters

Passed)
HP Results: Complex Rendezvous Benchmarks
HP Results: More Rendezvous Benchmarks

HP Results: Memory Allocation: Storage Allocated is
Fixed

HP Results: Dynamic Memory Allocation: Storage Allocated is

Variable .
HP Results: Dynamic Memory Allocation with the NEW
Allocator+ .« « ¢ .

HP Results: New Allocator: No Storage Deallocation
HP Results: NEW Allocator:Active Tasks = 5 .
HP Results: NEW Allocator:Active Tasks = 10

HP Results: Exception Raised/Handled in Block -

HP Results: Exception Raised/Handled in Block -
HP4.35 e e e

- i -

37

38
39
40
41
42
43

45
51

53
55
57

58

59

60
61
62
63

65

TABLE 43.

TABLE 4.

TABLE 45.
TABLE 46.
TABLE 47.
TABLE 48.
TABLE 49.
TABLE 50.
TABLE 51.

TABLE 52.
TABLE 53.

TABLE 54.

TABLE 55.
TABLE 56.
TABLE 57.
TABLE S8.
TABLE 59.

TABLE 60.
TABLE 61.

HP Results: Exception Raised/Handled One Level Above -

HP Results: Exception Raised/Handled One Level Above -
HP4.35

HP Resuits: Tasking_Error Exception Benchmarks
HP Results: Chapter 13 Benchmarks .

HP Results: CLOCK Function Tests .

HP Results: TIME and DURATION Mathematics
HP Results: Numeric Computation Benchmarks
HP Results: Subprogram Overhead (Intra-Package)

HP Results: Subprogram Overhead (Intra-Package with Pragma

INLINE)
HP Results: Subprogram Overhead (Inter-Package)

HP Results: Subprogram Overhead (Intra-Package with Generic

Instantiations) .

HP Results: Subprogram Overhead (Inter-Package with Generic

Instantiations) .

HP Results: Pragma Benchmarks

HP Results: In_put/ Output Benchmarks .

HP Results: Tasking Implementation Benchmarks

HP Results: Rendezvous Implementation Benchmarks

HP Resuits: Scheduling and Delay Statement
Dependencies . e e e s

HP Results: Memory Management Dependencies
HP Results: Real-time Paradigms

-1V -

66

67
68
69
70
71
72
73

74
75

76

77
78
79
80
81

82
83

1. Introduction

The Center for Software Engineering, Ft. Monmouth, NJ has been involved with
developing benchmarks for Ada language and runtime features considered important
for programming real-time embedded applications. As part of this effort, real-time
performance benchmarks were developed that measure the performance of individual
Ada features, determine Ada runtime system implementation dependencies, and
determine the performance of paradigms found in real-time systems [1]. The report
titled "Real-time Performance Benchmarks for Ada" should be consulted for an in-
depth discussion of the benchmarks as well as the strategy used in designing the real-
time benchmarks [1]. Report [1] also contains the results obtained by running the
Real-time benchmarks on a Verdix Ada compiler system hosted on SUN 3/60 and
targeted to a Motorola 68020 processor. In this report, the real-time benchmarks
have been run on a Intel 80386 computer using the DDC-I Ada compiler system
targeted to Intel 8086 microprocessor.

Section 2 briefly describes the Real-time benchmarks.
Section 3 describes the organization of the Real-time Benchmarks.

Section 4 lists the execution results obtained by running the benchmarks on a Intel
80386 computer.

Section 5 concludes with some thoughts about the results obtained during this effort.
Results of running the benchmarks on a HP 9000/350 computer using two versions of

the self-hosted HP Ada compiler (namely HP3.25 and HP4.35) running under HP-UX
are presented in Appendix A.

2. Real-time Benchmarks

The Real-time benchmarks were developed at the Advanced Software Technology,
Center for Software Engineering, US Army CECOM. A detailed discussion of the
Real-time benchmarks is presented in reference [1]. Also, the report titled
“Documentation For Real-time Benchmarks For Ada" describes the organization,
layout and file naming conventions of the Real-time benchmarks [2].

The Real-time benchmarks use three distinct approaches to determine performance
of Ada compiler systems. These approaches are discussed briefly in the following
sections.

2.1 Measure Performance Of Individual Features

This approach measures the execution speed of individual features of the language
and runtime system by isolating the feature to be measured to the finest extent
possible. Such benchmarks are useful in understanding the efficiency of a specific
feature of an Ada implementation. For example, a benchmark that measures the time
for a simple rendezvous can be run on two Ada compiler systems. Based on the
results, an application can choose one compiler system over the other. The advantage
of such an approach is performance evaluation without bias towards any application.
These tests are useful for bottleneck analysis in which a score for a given test must
exceed a stated threshold if an Ada implementation is to be considered suitable for an
application. Benchmarks have been designed for Ada features such as tasking,
memory management, exception handling, Chapter 13, interrupt Handling, CLOCK
overhead and Type Duration, numeric computations, subprogram call overhead,
Pragmas, and Input/Output.

2.2 Determining Runtime System Implementation

These benchmarks are concerned primarily with determining the implementation
characteristics of an Ada Runtime System. The scheduling algorithm, storage
allocation/deallocation algorithm, priority of rendezvous between two tasks without
explicit priorities are some of the many implementation dependent characteristics that
need to be known to determine if a compiler system is suitable for a particular real-
time embedded application. Some implementation dependencies cannot be
benchmarked and that information has to be obtained from the compiler vendor as

well as the documentation supplied by the vendor. A major effort in such benchmarks
involves interpreting the results obtained by running the benchmarks and drawing the
correct conclusions. A detailed description has been provided to help interpret the
results. The ARTEWG document "Catalog of Ada Runtime Implementation
Dependencies” [4] lists those Ada features that are implementation dependent. This
document has been consulted extensively in determining which implementation
dependencies need to be benchmarked for real-time embedded systems. Benchmarks
have been designed for Ada features such as: tasking, scheduling and delay statement,
memory management, exceptions, interrupt handling, and asynchronous I/O.

2.3 Real-time Paradigins

This approach involves programming algorithms found in embedded systems. For
example, a situation in real-time systems may be a producer that monitors a sensor
and produces ~utput asynchronously and sends it to a consumer. The producer task
cannot wait for a rendezvous with the consumer (who might be doing something else)
as the producer task might miss a sensor reading. To program this paradigm in Ada
requires three tasks: a producer task, a buffer task that receives inptt from the
producer task and sends the input to the third task:consumer task.

Macro constructs are defined as a set of Ada statements that perform a well defined
process e.g. semaphores, mailbox construct etc. For real-time embedded systems,
real-time paradigms can be identified and programmed in Ada using macro
constructs. These benchmarks can be run on Ada compiler implementations and
statistics gathered on their performance.

3. Organization of the Real-time Benchmarks

This section describes the organization of the Real-time benchmarks. For more details
refer to the report "Documentation For Real-time Performance Benchmarks for
Ada" [2].

At the top level of the directory structure is the directory bench. There are 3
directories under bench:

o micro: The directory micro contains the benchmarks that measure the
performance of Ada features that are important for real-time embedded
applications.

o rts: The directory rts contains benchmarks that measure runtime implementation
dependencies.

o paradigms: The directory paradigms contains benchmarks that implement macro
constructs and real-time programming paradigms.

3.1 Micro

The directory micro contains the directories that contain the micro benchmarks.

« Iv lv contains loop verification benchmarks. This benchmark is executed to verify
that textually similar loops should take equal amount of time to execute.

e t: t contains tasking activation/termination benchmarks. These benchmarks
measure tasking activation/termination timings under various conditions.

e r: r contains tasking synchronization benchmarks. These benchmarks determine
the time required to perform rendezvous under various loads and conditions.

e ex: ex contains exception handling related benchmarks. Exception handling and
propagation timings are measured by these benchmarks.

e chap13: chap13 contains Chapter 13 related benchmarks. These benchmarks may
not compile for some Ada compiler systems.

e dd: dd contains benchmarks that measure dynamic allocation time in declarative
regions.

e dn: dn contains dynamic allocation with new operator benchmarks (file
dn_compile contains the list of benchmarks that need to be compiled for these

-——

cases). The directory dn also contains benchmarks that determine allocation time
without memory being freed by UNCHECKED DEALLOCATION (file
dn_compilel contains the list of files that need to be compiled for these
benchmarks). The directory new under dn contains tests that determine the affect
of additional tasks on time for dynamic allocation (file dn_compile contains files
for 5 tasks and dn_compilel contains for 10 tasks).

e co: co contains Clock function calling overhead and resolution benchmarks.
« i0: io contains input/output benchmarks.

« tm: tm contains mathematical benchmarks.

o d: d contains regular case do nothing subprogram overhead benchmarks.

e i: i contains inline subprogram overhead benchmarks.

e P: g contains cross package subprogram overhead benchmarks.

e g gcontains generic subprogram overhead benchmarks.

e C: ccontains generic cross package subprogram overhead benchmarks.

e dt: dt contains scheduling and delay statement benchmarks.
3.2 rts

The directory rts under bench contains the benchmarks that determine runtime
implementation dependencies. The following directories exist under rts:

e t: t contains benchmarks that determine tasking related runtime implementation
dependencies.

er: r contains benchmarks that determine rendezvous related runtime
implementation dependencies.

e mm: mm contains benchmarks that determine memory management related
runtime implementation dependencies.

e ex: ex contains benchmarks that determine exception related runtime
implementation dependencies.

3.3 paradigms

The directory paradigms contains the benchmarks that determine the performance of
macro constructs and real-time paradigms.

4. Benchmark Execution on DDC-I Ada Compiler

This section presents the results of running the Real-time benchmarks on the DDC-I
Ada Compiler System targeted to the Intel 8086 computer. The benchmarks have
been run on a Intel 80386 computer (as Intel 8086 code can also run on the Intel
80386).

4.1 Testbed Hard\ are and Software

The hardware used was MicroVAX II running MicroVMS 4.2, linked to a Tandy
Corporation Intel 80386 computer.

Host: MicroVAX I1, running MicroVMS 4.2.

Compiler: DDC-I Ada Development System targeted to Intel 8086
target

Target: Intel 80386 computer with 1 megabyte of RAM.

The benchmarks were compiled on the MicroVAX II and then downloaded to the
Intel 80386 computer via Kermit. The benchmarks were compiled without the
optimize option and the timings listed are for un-optimized runs.

4.2 Microscopic Benchmarks
4.2.1 Tasking
4.2.1.1 Task Activation/Termination

Table 1 |lists the benchmarks that have been developed for Task
activation/termination.

TABLE 1. Task/Activation Termination Benchmarks

Execution time in milliseconds
File Name | Benchmark Description Time
t00001.a Task type in main, object in block statement 0.305
t00001_1 | Task object is declared directly in block statement | 0.366.8
t00001_2.a | Task type and object defined in package procedure | 0.366
t00001_3.a | Task type in package, object in package procedure | 0.366
t00001_4.a | Task type and object are declared in another task | 0.356
t00002.a Task type and array elaborated in a procedure 15
t00002_1.a | Task type in package, array in procedure 153
t00002_2.a | Task type in main, array in package procedure 1.53
t00003.a Task object is declared as part of record 0.366
t00004.a Task access type in main, task created via new 0.370
t00004_1.a | Task access type in block, task created via new 0370
t00004_2.a | Task access type in main, array created via new 0.370
t00005.a Task object in block statement, idle tasks=1 0.340
t00005_1.a | Task object in block statement, idle tasks=5 0.340
t00005_2.a | Task object in block statement, idle tasks=10 0.340
t00005_3.a | Task object in block statement, idle tasks=20 0.341
t00006.a Task created via new allocator, idle tasks=1 0.370
t00006_l.a | Task created via new allocator, idle tasks=5 0.370
t00006_2.a | Task created via new allocator, idle tasks=10 0370
t00006_3.a | Task created via new allocator, idle tasks=20 0.371

-10-

Some observations about the resuits in Table 1 are:

1. For the DDC-I compiler, the average time for task activation/termination for
tasks declared in arrays is around 1.5 milliseconds, which is significantly higher
than the task activation/termination time (0.35 milliseconds) for tasks declared
in the main program. This is due to the fact that as each task in the array is
elaborated, the task space for that task is left intact till all tasks in the array have
been elaborated. Storage allocatior: times for tasks may deteriorate as more and
more space has been allocated.

2. The DDC-1 compiler takes more time (0.37 milliseconds) for task
activation/termination timing via the new allocator as compared to task cbjects
declared in the main program (0.35 milliseconds).

3. There is no effect on task activation/termination timings when the number of
idle tasks increases.

4.2.1.2 Task Synchronization

Table 2 lists the benchmarks for simple rendezvous.

-11-

TABLE 2. Simple Rendezvous Benchmarks (No Parameters Passed)

Execution time in microseconds

File Name | Benchmark Description Time
r00001.a Procedure calls entry of task declared in main 67
r00001_l.a | Procedure calls entry in task created via new 67
r00001_2.a | Main calls entry in task decl in package 104
r00002.a Main calls two entries in two tasks decl in package 103
r00002_1.a | Main calls 10 entries in ten tasks decl in package 102
r00002_2.a | Main calls 10 entries in one task decl in package 102
r00003.a Main calls 1st entry in select, 2 entries decl 157
r00003_1.a | Main calls last entry in select, 2 entries decl 154
r00003 2.a | Main calls 1st entry in select, 10 entries decl 241
r00003_3.a | Main calls last entry in select, 10 entries decl 210
r00003_4.a | Main calls 6th entry in select, 10 entries decl 225
r00003_5S.a | Main calls 1st entry in select, 20 entries decl 342
r00003_6.a | Main calls last entry in select, 20 entries decl 283
r00003_7.a | Main calls 11th entry in select, 20 entries decl 310
r00004.2 Main calls 1st entry out of 2, 1st guard true next false 150
r00004_1.a | Main calls last entry out of 2, 1st guard false next true 152
r00004 2.a | Main calls 1st entry out of 20, 1st guard true rest false 187
r00004_3.a | Main calls last entry out of 20, last guard true rest false 189
r00004_4.a | Main calls 11th entry out of 20, 11th guard true rest false | 187
r00004_5.a | Main calls 11th entry out of 20, all guards true 339

-12-

Some observations from the results in Table 2 are:

1

Task rendezvous time for single entry calls in select is 67 microseconds. For
tasks that are declared in packages and entry call made from the main program,
the rendezvous time increases to 104 microseconds.

For the DDC-I compiler, the timing for rendezvous is nearly the same for the
scenarios in which the main program calls ten entries in 10 different tasks or the
main program calls 10 entries in one task.

The measurements indicate that the more the number of entries in a select
statement, the more time it takes to rendezvous with any entry in the select
statement.

Also, for the DDC-I compiler the later the position of the accept in the select
statement, the less time it takes for the rendezvous to complete (without the
guard statement).

The DDC-I compiler evaluates the guards before the entry call is made and
hence guards have minimal effect on rendezvous time.

Table 3 lists complex rendezvous benchmarks.

-13-

TABLE 3. Complex Rendezvous Benchmarks

Execution time in microseconds

File Direction | Type and Size Time
Name Passed Number Passed (us)
r00005_i.a In Integer Array 1 107
r00005_o.a Out Integer Array 1 106
r00005_io.a In Qut Integer Array 1 109
r00005_ 1 ia | In Integer Array 1000 | 108
r00005_1 o.a | Out Integer Array 1000 110
r00005_1 io.a { InOut Integer Array 1000 110
r00005_2 ia In Integer Array 10000 | 107
r00005_2 o.a | Out Integer Array 10000 | 109
r00005_2 io.a | In Out Integer Array 10000 { 110
r00005 3 ia | In 1 Integer 107
r00005 3 o.a | Out 1 Integer 110
r00005_3 io.a { InOut 1 Integer 108
00005 4 ia | In 10 Integers 168
r00005_4 o.a | Out 10 Integers 189
r00005_4_io.a | In Out 10 Integers 195
r00005 5 ia | In 100 Integers 488
r00005_5 o.a | Out 100 Integers 627
r00005_5_io.a | In Qut 100 Integers 663

-14-

Some observations about the results in Table 3 are:

1. The measurements indicate that integer arrays are passed by reference rather
than by copy as the rendezvous time for integer arrays of 1 and 1000 are
essentially the same.

2. As far as integer parameters are concerned, the DDC-I compiler uses pass by
copy (due to the fact that the time for rendezvous increases with the increase in
the number of integer parameters).

3. Also, the time for mode out and in out parameters is more than the time
required for parameters of mode in. This is logical since the compiler has to
copy back the change in value that can occur with a variable of type out or in
out.

Table 4 lists more rendezvous benchmarks.

-15 -

TABLE 4. More Rendezvous Benchmarks

Execution time in microseconds

File Name Benchmark Description Time (us)
r00006_1 1.a | 1st entry out of 2 called with 10 integers 254
r00006_1 2.a | 1st entry out of 2 called with 100 integers 737
r00006_2 1.a | Last entry out of 2 called with 10 integers 247
r00006_2 2.a | Last entry out of 2 called with 100 integers 719
r00006_3 l.a | 1st entry out of 10 called with 10 integers 338
r00006_3 2.a | 1st entry out of 10 called with 100 integers 806
r00006_4 1.a | Last entry out of 10 called with 10 integers 307
r00006_4 2.a | Last entry out of 10 called with 100 integers 785
r00006_5_1.a | 1st entry out of 20 called with 10 integers 437
r00006_5 2.a | 1st entry out of 20 called with 100 integers 906
r00006_6 1.a | Last entry out of 20 called with 10 integers 378
r00006_6 2.a | Last entry out of 20 called with 100 integers 864
r00007.a Overhead due to terminate alternative 11
r00008.a Overhead of conditional entry call rendezvous complete S
r00008_1.a Overhead of conditional entry call,rendezvous incomplete | 25
r00009.2 Overhead of timed entry call,rendezvous complete 5
r00009_l.a Overhead of timed entry call,rendezvous incomplete 26
r00011.a Main calls an entry with 100 Integers,Idle tasks = 1 665
r00011_1.a Main calls entry with 100 Integers,Idle tasks = 5 665
r00011_2.a Main calls entry with 100 Integers,Idle tasks = 10 665
r0001* 3.a Main calls entry with 100 Integers,Idle tasks = 20 665

- 16 -

Some observations about the results in Table 4 are:

1. For the DDC-I compiler, the time for rendezvous call to the last entry with 100
integer parameters (mode in out) increases from 719 microseconds (2 entries)
to 785 microseconds (10 entries) to 864 microseconds (20 entries). Thus, it can
be deduced that time for rendezvous with integer parameters increases linearly
as the number of accept statements in the select statement increases.

2. For the DDC-I compiler time for rendezvous remains the same for up to 20 idle
tasks.
4.2.2 Memory Management

Table S lists Dynamic allocation benchmarks when the storage allocated is fixed.

-17-

TABLE 5. Dynamic Allocation:Storage Allocated Is Fixed

Execution time in microseconds

File Type Number | Size of | Time
Name Declared Declared | Object { (us)
dd_inl.a Integer 1 03
dd_in10.a Integer 10 03
dd_in100.a | Integer 100 03
dd stl.a String 1 1 03
dd_st10.a String 1 10 03
dd _st100.a | String 1 100 03
dd_enl.a Enumeration 1 04
dd_enl0.a Enumeration 10 04
dd_enl00.a | Enumeration 100 0.4
dd arla Array of Integer 1 1 03
dd_arl0.a Array of Integer 1 10 03
dd_ar100.a | Array of Integer 1 100 03
dd_arlka Array of Integer 1 1000 0.4
dd_arl0k.a | Array of Integer i 10000 | 0.4
dd_ar100k.a | Array of Integer 1 100000 | 04
dd rcla Record of Integer | 1 1 03
dd_rc10.a Record of Integer | 1 10 03
dd_rc100.a | Record of Integer | 1 100 03

-18 -

Some observations about the results in Table 5 are:

1. For the DDC-I Compiler, time required to allocate integer variables,
enumeration variables, strings and arrays of integers upon entering a
subprogram was smail (< 1 microsecond).

Table 6 lists dynamic allocation benchmarks when the storage allocated is variable.
TABLE 6. Dynamic Allocation:Storage Allocated Is Variable

Execution time in microseconds

File Type Number | Size of | Time
Name Declared Declared | Object | (us)
dd_1dl.a 1-D Dynamically Bounded Array | 1 1 12
dd_1d10.a | 1-D Dynamically Bounded Array | 1 10 12
dd 2dl.a | 2-D Dynamically Bounded Array | 1 1 26
dd_2d10.a | 2-D Dynamically Bounded Array | 1 100 26
dd 3dl.a | 3-D Dynamically Bounded Array | 1 1 45
dd_3d10.a | 3-D Dynamically Bounded Array | 1 1000 45

Some observations about the results in Table 6 are:

1. The time required for dynamically bounded arrays increases as the dimensions
of the dynamically bounded array increase but not when tue size of the object
increases.

-19-

Table 7 lists dynamic allocation benchmarks with new allocator.

TABLE 7. Dynamic Allocation with NEW Allocator

Execution time in microseconds

File Type Size of | Time
Name Declared Object | (us)
dn_inl.a Integer 1 102
dn_enla Enumeration 1 101
dn stla | String 1 101
dn_stl0.a String 10 101
dn_st100.a | String 100 101
dn_arla Integer Array 1 101
dn_arl0.a Integer Array 10 101
dn_ar100.a | Integer Array 100 101
dn_arlk.a | Integer Array 1000 190
dn_rcla Record of Integer 1 101
dn_rcl0.a | Record of Integer 10 101
dn_rc20.a | Record of Integer 20 101
dn_rc50.a | Record of Integer 50 101
dn rc100.a | Record of Integer 100 101
dn_1dla 1-D Dynamically Bounded Array | 1 203
dn_1d10.a | 1-D Dynamically Bounded Array | 10 203
dn_2dl.a 2-D Dynamically Bounded Array | 1 211
dn_2d10.a | 2-D Dynamically Bounded Array | 100 211
dn 3dl.a 3-D Dynamically Bounded Array | 1 238
dn_3d10.a | 3-D Dynamically Bounded Array | 1000 333

-20-

Observations that can be made from the results in Table 7 are:

1. Time to allocate a discrete variable via the new allocator is around 101
microseconds.

2. Time to allocate integer array of size 1000 or more is around 190 microseconds.

3. Time to allocate dynamically bounded arrays increases as the dimensions of the
array increase.

Table 8 lists dynamic allocation benchmarks with new allocator and no storage
deallocation takes place. In Table 8, the column size of object for strings is
STRING’LENGTH, for integer arrays size of object is array’length, and for records
the size of object is specified as the number of fields in the record.

-21-

TABLE 8. NEW Allocator:No Storage Deallocation

Execution time in microseconds

File Type Number | Size of | Time
Name Declared Declared | Object | (us)
dn_inl.a Integer 1 1 50
dn_enl.a Enumeration 1 1 49
dn stla String 1 1 48
dn_st10.a String 1 10 49
dn st100.a | String 1 100 51
dn_arla Integer Array 1 1 48
dn_arl0.a | Integer Array 1 10 51
dn_ar100.a | Integer Array 1 100 51
dn arlk.a | Integer Array 1 1000 90
dn rcla Record of Integer 1 1 48
dn _rc10.a Record of Integer 1 10 51
dn rc20.a Record of Integer 1 20 58
dn_rc50.a Record of Integer 1 50 59
dn rc100.a | Record of Integer 1 100 59
dn_1dl.a 1-D Dynamically Bounded Array | 1 1 110
dn_1d10.2 | 1-D Dynamically Bounded Array | 1 10 115
dn_2dl.a 2-D Dynamically Bounded Array | 1 1 119
dn_2d10.a | 2-D Dynamically Bounded Array | 1 100 121
dn 3dl.a 3-D Dynamically Bounded Array | 1 1 149
dn 3d10.a | 3-D Dynamically Bounded Array | 1 1000 151

Some observations about the results in Table 8 are:

1. For objects upto size 100 or less, time for dynamic memory allocation remains
essentially the same, but for objects of size 1000 or more, memory allocation
increases by about 80% or more.

2. In these test cases, memory allocated is not being freed and therefore, the
measurements exclude the time to free the memory that is being allocated.
Hence, the timings listed in Table 8 are less than the timings listed in Table 7.

Table 9 lists dynamic allocation benchmarks with new allocator when active tasks is 5.
In Table 9, the column size of object for strings is STRING’'LENGTH, for integer
arrays size of object is array’length, and for records the size of object is specified as
the number of fields in the record.

TABLE 9. NEW Allocator:Active Tasks = §

Execution time in microseconds

File Type Number | Size of | Time
Name Declared Declared | Object | (us)
dn _st100.a | String 1 100 101
dn_arlk.a | Integer Array 1 1000 197
dn rc100.a | Record of Integer 1 100 9
dn_1d10.a | 1-D Dynamically Bounded Array | 1 10 203
dn 2d10.a | 2-D Dynamically Bounded Array | 1 100 211
dn_3d10.a | 3-D Dynamically Bounded Array | 1 1000 333

Table 10 lists dynamic allocation benchmarks with new allocator when active tasks is
10 (object sizes are the same in Tables 9 and 10).. In Table 10, the column size of
object for strings is STRING'LENGTH, for integer arrays size of object is
array’iength, and for records the size of object is specified as the number of fields in
the record.

TABLE 10. NEW Allocator:Active Tasks = 10

Execution time in microseconds

File Type Number | Size of | Time
Name Declared Declared | Object | (us)
dn st100.a | String 1 100 101
dn_arlk.a | Integer Array 1 1000 198
dn _rci00.a | Record of Integer 1 100 9
dn_1d10.a | 1-D Dynamically Bounded Array | 1 10 202
dn 2d10.a | 2-D Dynamically Bounded Array | 1 100 211
dn 3d10.a | 3-D Dynamically Bounded Array | 1 1000 333

Tables 9 and 10 show negligible impact of existing tasks in the system on the time for
memory allocation/deallocation.

4.2.3 Exceptions

Table 11 below gives the results for exception handling times for exceptions raised and
handled in a block for the DDC-I compiler. In this table, the word explicit has been
used for exceptions raised via the raise statement, and implicit is used for abnormal
conditions in the code.

TABLE 11. Exception Raised and Handled in Block

Execution time in microseconds

File Exception | User Constraint | Constraint | Numeric | Numeric
Name not raised | defined | _error _error _error _error
explicit | explicit implicit explicit implicit
€00001.a 02 92 117 125 122 131
€00001_1.a | 0.2 108 133 140 135 146
€00001 2.a | 0.2 134 158 166 162 173

Some observations from Table 11 are:

1. For the DDC-I compiler, the overhead associated with the code sequence (that
has an exception handler associated with it, yet no exception is raised during the
execution of that code) is negligible.

2. For the user-defined exception, exception handling times are much less than
exception handling times for other exceptions.

3. As expected, times for handling NUMERIC ERROR (implicitly raised) is
higher than exception handling times for other exceptions. Exception handling
times are increased as more tasks are active in the system.

Table 12 below gives the results (for DDC-I compiler) for exception handling times
for exceptions raised and handled one level above: In this table, the word explicit has
been used for exceptions raised via the raise statement, and implicit is used for
abnormal conditions in the code.

TABLE 12, Exception Raised and Handled One Level Above

Execution time in microseconds

File User Constraint | Constraint | Numeric | Numeric
Name defined | _error _error _error _error
explicit | explicit implicit explicit implicit
€00002.a 143 167 175 171 182
€00002_1.a | 165 190 198 194 205
€00002 2.a | 177 200 208 202 214

Some observations from Table 12 are:

1. After subtracting the timings obtained in the previous Table, it takes roughly
about 22 more microseconds to propagate and handle the exception one level

above where it is raised.

Table 13 below gives the results (for DDC-I compiler) for exception handling times

for exceptions raised and handled more than one level above:

TABLE 13. More Exception Handling Benchmarks

Execution time in microseconds

File Name | Benchmark Description . Time
€00003.a User Exception handled 3 procs above 241
€00003_1.a | User Exception handled 3 procs above,S idle tasks | 264
€00003 2.a | User Exception handled 3 procs above,10 idle tasks | 275
€00004.a User Exception Raised handled 4 procs above 290
€00004_1.a | User Exception handled 4 procs above,5 idle tasks | 312
€00004 2.a | User Exception handled 4 procs above,10 idle tasks | 324

Some observations from Table 13 are:

1. This benchmark reinforces the results about the extra time for each level (50
microseconds: this is obtained by subtracting the time for €00003.a from
€000004.a) that the exception has to be propagated.

Table 14 lists TASKING_ERROR exception benchmarks.
TABLE 14. Tasking Error Exception Benchmarks

Execution time in microseconds

File Name | Benchmark Description Time (us)
¢00005.a Exception Raised in rendezvous,0 idle tasks 115
€00005_1.a | Exception Raised in rendezvous,S idle tasks 113
€00005_2.a | Exception Raised in rendezvous,10 idle tasks 113

€00006.a Child task has error during elaboration,0 idle tasks | STORAGE_ERROR

€00006_1.a | Child task has error during elaboration,5 idle tasks | STORAGE_ERROR

€00006_2.a | Child task has error during elaboration,10 idle tasks | STORAGE_ERROR

Active tasks in the system have no effect on exceptions raised and handled during a
rendezvous.

4.2.4 Chapter 13 Benchmarks

Table 15 lists all the Chapter 13 benchmarks.

-27-

TABLE 15. Chapter 13 Benchmarks

Execution time in microseconds

File Name | Benchmark Description Time (us)
h00001.a Boolean operations on arrays,Pragma PACK 10
h00001_1.a | Boolean operations on arrays,Rep Clause Not compiled
h00001_2.a | Boolean operations on arrays,not packed 923
h00002.a Boolean operations on array components,Pragma Pack 636
h00002_1.a | Boolean operations on array components,Rep Clause Not compiled
h00002 2.a | Boolean operations on array components,not packed 157
h00003.a Assignment,comparison on arrays of booleans,Pragma PACK 771
h00003 1.2 | Assignment,comparison on boolean arrays,Rep Clause Not compiled
h00003 2.2 | Assignment,comparison on boolean arrays,not packed 24
h00004.a Assign compare whole records,no rep clause 1
h00004_1.a | Assign, compare whole records,rep clause 6
h00004 2.a | Assign, compare whole records,Pragma PACK 2
h00005.a UNCHECKED_CONVERSION, INTEGER object to another { 0.3
h00005_1.a { UNCHECKED_CONVERSION, STRING to INTEGER 2
h00005_2.a | UNCHECKED_CONVERSIONfloating array to record No response
h00006.a Store, extract record bit fields, no rep clause 20
b00006_1.a | Store, extract record bit fields, rep clause 30
h00006_2.a | Store, extract record bit fields, rep clause 31
h00008.a Store, extract record bit fields defined Not compiled
by nested rep clauses using packed arrays
h00009.a Change of representation from one record to another Not compiled
h00010.a POS,SUCC, and PRED operations on enum type with rep 53
clause numbered with gaps in internal coding
h00010_1.a | POS,SUCC, and PRED operations on enum type with rep 54

clause numbered with no gaps in internal coding

Some observations about the results in Table 15 are:

1.

Boolean operations on whole unpacked arrays is considerably higher than on
whole packed arrays.

Time for boolean operations on packed array components is considerably higher
than time for boolean operations on unpacked array components. The logical
explanation is that it takes more time to unpack the record in order to perform
the operation.

Time for Unchecked Conversion is nearly zero showing good optimization by
the compiler.

There is no effect on the execution time for enumeration representation clause
with no gaps and enumeration type representation clause with gaps.

Some programs could not be compiled. The compiier vendor has been
contacted.

4.2.5 Clock Function and TYPE Duration

Table 16 lists all the CLOCK tests.

TABLE 16. CLOCK Function Tests

Execution time in microseconds

File Name | Benchmark Description Time (us)

c00001.a CLOCXK function overhead | 607.59

¢00002.a CLOCK resolution 0.0001

Some observations about the results in Table 16 are:

1. For real-time applications, an overhead of 607 microseconds could be very

time-expensive. Generally speaking, a CLOCK function overhead of 100
microseconds is more suitable for real-time applications. It has to be compared
with the CLOCK function overhead of other Ada compilers.

The CLOCK resolution of 0.0001 microseconds is acceptable for real-time
applications. Again, it has to be compared with the CLOCK resolution of other

-29-

Ada compilers.
4.2.6 Numeric Computation

Table 17 lists the benchmarks that calculate the overhead involved in dynamic
computation of values of type TIME and DURATION.

TABLE 17, TIME and DURATION Mathematics

Execution time in microseconds

File Operation Time (us)
Name | Performed

tml.a | Time = Var_time + Var_duration 263
tm2.a | Time = Var_time + Const_duration 263
tm3.a | Time = Var_duration + Var_time 263
tm4.a | Time = Const_duration + Var_time 263
tmS.a | Time = Var_time - Var_duration 262
tm6.a | Time = Var_time - Const_duration 262
tm7.a | Duration = Var_time - Var_time 22

tm8.a | Duration = Var_duration + var_duration 11

tm9.a | Duration = Var_duration + Const_duration 11

tm10.a | Duration = Const_duration + Var_duration 1.2

tmila | Duration = Const_duration + Const_duration | 1.1

tm12.a | Duration = Var_duration - Var_duration 13
tm13.a | Duration = Var_duration - Const_duration 11
tml4.a | Duration = Const_duration - Var_duration 12

tm15.a | Duration = Const_duration - Const_duration | 1.1

These timings have to be compared to results from other compilers.

-30-

Table 18 lists the results of running mathematical computation benchmarks.
TABLE 18. Numeric Computation Benchmarks

Execution time in microseconds

File Operation Time
Name | Performed

tml16.a | Float Matrix Multiplication | 798.0

tm17.a | Float Matrix Addition 769.70
tm18.a | Factorial Calculation 89.0
tm19.a | Square root calculation 345.5

These timings have to be compared to results from other compilers.
4.2.7 Subprogram Overhead

Table 19 lists the types and modes of the parameters that are used in intra-package
subprogram overhead tests and also lists the results. In Table 19, the headings under
the Time column: I, O, I_O have the times listed for parameters with mode in, out,
and in out.

-31-

TABLE 19. Subprogram Overhead (Intra-Package)

Execution tirie in microseconds

File Type of Parameter Number | Size | Time (us)

Name Passed Passed I 0|10
d na 0 0 19

dila Integer 1 9 19 | 19
d i 10.a Integer 10 19 29 (29
d_i 100.a Integer 100 40 68 | 117
de la Enumeration 1 9 19 {19
d e 10.a Enumeration 10 19 29129
d_e_100.a Enumeration 100 48 78 | 107
dala Array of Integer 1 1 9 19|19
d_a_10.a Array of Integer 1 10 9 19|19
d_a 100.a Array of Integer 1 100 9 19 {19
d a 10k.a Array of Integer 1 10000 | 9 19119
drla Record of Integer 1 1 9 19|19
d_r_100.a Record of Integer 1 100 19 19|19
duala Unconstrained array | 1 1 19 19| 19
d u_a_100.a | Unconstrained array | 1 100 9 V 19|19
d u_a 10ka | Unconstrained array | 1 10000 | 9 19| 19
durla Unconstrained record | 1 1 9 19 | 19
d ur 100.a | Unconstrained record | 1 100 9 19|19

Observations about the results in Table 19 are:

L

For integer and enumeration types, subprogram overhead for variables of mode
out and in out is greater than that of mode in. This is because of the additiona!
overhead involved in copying back the parameters of mode out and in out when
returning from the procedure call.

-32-

2. Also, the overhead for passing 100 integers is higher than the overhead for
passing 1 integer (due to the time required for copying the integers on the stack
when the procedure call is made).

3. The results for arrays and records indicate that they are passed by reference as
opposed to pass by copy.

4, The timings for unconstrained types suggest that there is very little extra
overhead in passing the constraint information in the procedure call.

Table 20 lists the types and modes of the parameters that are used in intra-package
tests with Pragma INLINE to determine if the INLINE pragma is supported and if it
is, the amount of overhead involved in executing code generated by by an in-line
expansion as opposed to executing the same set of statements originally coded without
a subprogram call. In Table 20, the headings under the Time column: I, O, I_O have
the ti-r.es listed for parameters with mode in, out, and in out.

-33-

TABLE 20. Subprogram Overhead (Intra-Package with Pragma INLINE)

Execution time in microseconds

File Type of Parameter Number { Size Time (us)

Name Passed Passed I O}10
ina 0 0 2

iila Integer 1 2 3 14
ii10.a Integer 10 2 4 | 4
ii 100.a Integer 100 8 8 |10
iela Enumeration 1 2 3 (3
ie10a Enumeration 10 2 4 |4
i_e 100.a Enumeration 100 7 1019
iala Array of Integer 1 1 2 4 {4
ial0a Array of Integer 1 10 2 4 {4
i_a_100.a Array of Integer 1 100 2 4 |3
i_a_10ka Array of Integer 1 10000 | 2 4 |4
irla Record of Integer 1 1 2 4 |4
i_r 100.a Record of Integer 1 100 4 4 | 4
iuala Unconstrained array | 1 1 4 4 |4
i_u_a 100.a | Unconstrained array | 1 100 2 4 |4
i_ua 10ka | Unconstrained array | 1 10000 | 2 4 | 4
iur la Unconstrained record | 1 1 2 4 | 4
i ur 100.a | Unconstrained record | 1 100 2 4 |3

Observation about the results in Table 20 are:

1. The overhead due to INLINE expansion of code for parameters of type integer
and enumeration indicates that the overhead due to INLINE expansion is higher
than the time it takes to execute the same set of statements without a procedure
call.

2. For composite and unconstrained types, the timings indicate that the overhead
in executing code produced by pragma INLINE is negligible.

Inter-Package Reference Tests: In inter-package reference, the calling subprogram is
in a package other than the one in which the called subprogram resides. The
motivation for inter-package tests is to compare the subprogram call overhead time
between intra- and inter-package calls.

Table 21 lists the types of the parameters that are used in these tests and also lists the
results for the DDC-I compiler. In Table 21, the headings under the Time column: I,
O, I_O have the times listed for parameters with mode in, out, and in out respectively.

-35-

TABLE 21. Subprogram Overhead (Inter-Package)

Execution time in microseconds

File Type of Parameter Number | Size Time (us)

Name Passed Passed I OJI10
p_n.a 0 0 9

pila Integer 1 9 20 121
p_i 10.a Integer 10 10 21|21
p_i_100.a Integer 100 55 70 | 121
pela Enumeration 1 9 19119
p_e 10a Enumeration 10 1 21 |21
p_e_100.a Enumeration 100 53 72 | 119
pala Array of Integer 1 1 10 21| 21
p_a_10.a Array of Integer 1 10 10 21|21
p_a 100.a Array of Integer 1 100 11 2|22
p_a_10k.a Array of Integer 1 10000 | 12 2123
p_r_la Record of Integer 1 1 10 21121
p_r_100.a Record of Integer 1 100 2 23|23
puala Unconstrained array | 1 1 10 21 | 21
p_u_a 100.a | Unconstrained array | 1 100 12 23123
p_u_a 10k.a | Unconstrained array | 1 10000 | 12 3123
purla Unconstrained record | 1 1 10 3|23
p_u_r 100.a | Unconstrained record | 1 100 1 23| 24

Observations about the results in Table 21 indicate:

1. The overhead for passing 100 integers is higher than the overhead for passing 1
integer (due to the time required for copying the integers on the stack when the
procedure call is made).

-36-

2. The timings for records and arrays to indicate that they are passed by reference
as opposed to by copy.

3. The timings for unconstrained types seem to suggest that there is very little
extra overhead in passing the constraint information in the procedure call. Also,
unconstrained records and arrays are passed by reference.

Instantiations of Generic Code: In the tests for inter- and intra-package calls, the
subprograms are part of generic packages that are instantiated. These benchmarks
measure additional overhead involved in executing generic instantiations of the code.
Table 22 (for intra-package) and 23 (for inter-package) list the types of the
parameters that are used in these tests. In Tables 22 and 23, the headings under the
Time column: I, O, I_O have the times listed for parameters with mode in, out, and in
out respectively.

TABLE 22. Subprogram Overhead (Intra-Package With generic Instantiation)

-37-

Execution time in microseconds

File Type of Parameter | Number | Size Time (us)

Name Passed Passed I O|I0
gna 0 0 19

gilca Integer 1 12 241 25
gil0ca Integer 10 23 34135
g i 100 ca | Integer 100 56 791121
gelca Enumeration 1 12 2|24
g.e 10 ca | Enumeration 10 24 33 34
g_e_100_c.a | Enumeration 100 54 89 | 119
galca Array of Integer 1 1 13 23124
g_a 10 ca | Array of Integer 1 10 13 25123
g a_100_c.a | Array of Integer 1 100 12 241(23
g_a_10k c.a | Array of Integer 1 10000 | 13 24 | 24
grlca Record of Integer | 1 1 12 25125
g_r 100 c.a | Record of Integer | 1 100 23 2 | 26

Observations about the results in Table 22 indicate that:

1. The overhead for passing 100 integers is higher than the overhead for passing 1
integer (due to the time required for copying the integers on the stack when the
procedure call is made).

2. Tte timings for arrays and records indicate pass by reference.

3. Generic instantiation procedure call is more expensive than non-generic
instantiation procedure call.

-38-

TABLE 23, Subprogram Overhead (Inter-Package With Generic Instantiation)

Execution time in microseconds

File Type of Parameter | Number | Size Time (us)

Name Passed Passed I 0 IO
cna 0 0 18

cila Integer 1 18 335 |32
cil10.a | Integer 10 17 37 | 39
ci 100.a | Integer 100 75 102 | 129
cela Enumeration 1 18 34 |35
c e 10a | Enumeration 10 19 34 |35
c_e 100.a | Enumeration 100 81 109 | 129
cala Array of Integer 1 1 18 36 36
c_a_10.a | Array of Integer 1 10 19 35 | 35
c_a 100.a | Array of Integer 1 100 20 4 | 34
c_a 10ka | Array of Integer 1 10000 § 21 43 |4
crla Record of Integer | 1 1 19 35 |33
cr 100.a | Record of Integer | 1 100 36 35 136

Observations about the results in Table 23:

1. Times as listed for inter-package reference with generic instantiations are much
higher than with generic instantiations.

4.2.8 Pragmas

Table 23 lists the Pragma benchmarks. None of the pragma benchmarks (except for
Pragma Shared) produced any response on execution. The compiler vendor has been
contacted.

-39.

TABLE 24. Pragma Benchmarks

File Name Benchmark Description Time Difference (us)
pr0000L.a Pragma SUPPRESS used for Overflow_Check,

Division_Check, and Range Check No response
pr00001_1.a | Pragma SUPPRESS used for Access_Check No response
pr00001 2.a | Pragma SUPPRESS used for Index Check

and Length_Check No response
pr00001 3.a | Pragma SUPPRESS used for STORAGE_CHECK No response
pr00001_4.a | Pragma SUPPRESS used for ELABORATION CHECK | No response
pr00001_S.a | Pragma SUPPRESS used for INDEX CHECK No response
pr00002.a Pragma CONTROLLED used for access type No response
pr00003.a Pragma SHARED,shared integer updated No effect
pr00003_1.a | Pragma SHARED,shared integer updated No effect

during rendezvous

Some observations about the results in Table 24 are:

1. From the resuits obtained and also from looking at the compiler documentation,
it was determined that the DDC-I compiler does not implement pragma
SHARED.

-40-

4.2.9 Input/Output

Table 25 lists the benchmarks that deal with TEXT IO.
TABLE 25, Input/Output Benchmarks

Execution Time in Milliseconds
File Name | Benchmark Description Time
io00001.a | Create output file and copy characters 2789.0

io00002.a | Create output file, copy data using ENUMERATION 10 | 2167.0

i000003.a | Create output file, copy data using INTEGER IO 2109.0
i000004.a | Create output file, copy data using FLOAT IO 2009.0
io00005.a | Create output file, copy data using FIXED IO 1978.0

These benchmarks have to be compared with the results of other compilers.

4.3 Runtime Implementation Benchmarks

4.3.1 Tasking Implementation Dependencies

Table 26 lists the benchmarks that determine tasking implementation dependencies.

-41-

TABLE 26. Tasking Implementation Benchmarks

File Name | Benchmark Description Results
rt_t001.a Is task space deallocated on return from procedure Yes

on task termination
rt_t002.a Is task space deallocated upon task termination No

when access type is declared in library unit

rt_t003.a Determine order of elaboration when several tasks See
are activated below

rt_t004.a Can a task continue execution after its activation but | Yes
prior to completion of activation of tasks declared

in the same declarative part
rt_t005.a If allocation of task raises STORAGE_ERROR Task

when is exception raised Activation’
rt_t006.a What happens to tasks declared in a library Do not

package when main task terminates terminate
rt_t007.a Print default attribute STORAGE_SIZE 0 bytes

and SIZE for tasks objects 16 bytes
rt_t008.a Order of evaluation of tasks iu See

abort statement below

Some observations from the results in Table 26 are:

1. For rt_t003.a, the results for the DDC-I compiler indicate that the tasks are
activated in a random order and do not depend on the place where the task or
its body is declared.

2. For rt_t007.a, the attribute TASK’STORAGE SIZE was printed as 0. This is
incorrect and the compiler vendor has been contacted with the resuits.

3. The DDC-I compiler aborts the tasks in the order they are named in the abort
statement.

4.3.2 Task Synchronization

Table 27 lists the benchmarks that determine task synchronization implementation

——————————————————————————————

-42-

dependencies. The results for these benchmarks are listed below the table as the
results cannot fit in the table column size.

TABLE 27. Rendezvous Implementation Benchmarks

File Name | Benchmark Description

rt_ 100l.a | Algorithm used when choosing among branches
of selective wait statement

rt_r002.a Order of evaluation of guard conditions
in a selective wait

rt_r003.a Method to select from delay alternatives
of the same delay in selective wait

rt_r004.a Determine when expressions of an open delay
alternative or entry family index in an open
accept alternative evaluated

rt_r005.a Determine the priority of a task
which has no explicit priority specified

rt_r006.a Determine the priority of a rendezvous
between two tasks which have no explicit
priorities specified

1. rt_r001l.a: The DDC-I compiler accepts the entry calls in the reverse order that
they are declared in the select statement. This implies that real-time embedded
programmers using the DDC-I compiler should place their most critical accept
statements at the end of the select statement. If a program is designed using
this knowledge, it may present performance and portability problems if the
application changes the compiler for which the program was designed initially.

2. rt r002.a: The DDC-I compiler evaluates the guard conditions in the reverse
order that they are declared in the select statement.

3. rt_t003.a: The DDC-I compiler always selects the first delay alternative of the
same delay in a selective wait.

4. rt_r004.a: This benchmark did not execute on the DDC-I compiler. The
benchmark compiled fine, but could not execute. The program never returned.
The compiler vendor has been contacted.

-43-

5. rt r005.a: This benchmark determines the default priority of a task with
undefined priority value. For the DDC-I compiler, the default priority of a task
with undefined priority is PRIORITY’FIRST.

6. rt r006.a: This benchmark determines the default priority of a rendezvous
between two tasks with undefined priorities. For the DDC-I compiler, the
default priority of a rendezvous between two tasks with undefined priorities is
PRIORITY’FIRST.

4.3.3 Scheduling and Delay Statement

Table 28 lists the benchmarks for Scheduling and delay statement dependencies.

TABLE 28. Scheduling and Delay Statement Dependencies

File Name | Benchmark Description Results
dt00001.a | Determine minimum delay time 0.001 sec
dt00002.a | Determine if user tasks are pre-emptive Yes
dt00003.a | Determine method to share processor within | See

each priority level below
dt00004.a | Does delay 0.0 cause scheduling Yes

dt0003.a: For the DDC-I compiler, if time slicing is not enabled then tasks of the same
priority execute to completion unless a synchronization point is reached.

4.3.4 Memory Management

Table 29 lists the benchmarks for memory management dependencies.

TABLE 29. Memory management Dependencies

File Name | Benchmark Description Results
m00001.a Determine STORAGE_ERROR threshold | 376 k
m00002.a Is Unchecked _Deallocation implemented Yes
m00003.a Garbage Collection performed on fly No
m00003_1.a

m00004.a Garbage Collection performed on scope exit | No

Some observations about the results in Table 29 are:

1. For the system that these benchmarks were run on, 94 arrays of 1000 integers
was the maximum storage space allocated. At this point STORAGE ERROR
was raised. The size of the memory space available is approximately 376

kilobytes.

4.3.5 Asynchronous I/O0

rt_io001l.a: The results of this benchmark show that the DDC-I compiler does not

implement true asynchronous I/O.

4.4 Real-Time Paradigms

Real-time paradigms can be coded in Ada using macro constructs and benchmarked.
Also, a compiler implementation may recognize these paradigms and perform
optimizations to implement that paradigm much more efficiently.

Table 30 lists real-time paradigms that have been benchmarked.

-45-

TABLE 30. Real-time Paradigms

File Name Benchmark Description Time (us)

pa00001.a Simple producer consumer transaction 108
with main calling consumer task

pa00001_1.a | Simple producer consumer transaction with 168
consumer using selective wait

pa00001_2.a | Simple producer consumer transaction with 108
producer task calling consumer task

pa00001 _3.a | producer task communicates with consumer task 356
through a bounded buffer

pa00001 4.a | producer task communicates with consumer task 461
indirectly through a bounded buffer with a
transporter between buffer and consumer

pa00001 S.a | producer task communicates with consumer task 583
indirectly through a bounded buffer with a
transporter between buffer and producer as well as
transporter between buffer and consumer

pa00001_6.a | Producer task communicates with a 217
consumer via relay

pa00002.a Monitor using semaphores Error

pa00002_l.a | Monitor using rendezvous 604

pa00002_2.a | Monitor using rendezvous Tasking_Error

pa00004.a Abort a task and create a new one 3100

Some observations about the results in Table 30 are:

1.

In pa00001.a, the time measured is the time it takes for the producer to call the
entry in the consumer, the start of rendezvous with the consumer accepting the
information, and the beginning of execution of the calling task. This is
equivalent to two context switches: the first from the main task to the called task
and the second from the called task to the main task. Time for this interaction

is 108 microseconds.

-46-

In pa00001_1.a, the time measured is the time it takes for the producer to call
the entry in the consumer, the start of rendezvous with the consumer accepting
the information, and the beginning of execution of the calling task. Time for
rendezvous in this case is 168 microseconds.

This is similar to previous test, except that a producer task calls an entry in the
consumer task, instead of the main task calling an entry in the consumer task.
Both the producer and consumer task have the highest priority possible
(PRIORITY'LAST). Time for a single rendezvous in this case is 108
microseconds.

In pa00001 3.a, the producer task communicates with the consumer task
indirectly through a bounded buffer. Time taken by the consumer to receive
information from the producer via the buffer task is 356 microseconds.

In pa00001_4.a, a producer task communicates with a consumer task indirectly
through a bounded buffer with a transporter between the buffer and the
consumer. Time taken by the consumer to receive information from the
producer via the buffer and transporter tasks is 461 microseconds.

In pa00001_5.a, a producer task communicates with a consumer task indirectly
through a bounded buffer with a transporter between the buffer and the
producer as well as between the buffer and the consumer. Time taken by the
consummer to receive information from the producer is 583 microseconds.

In pa00001_6.a, a producer task communicates with a consumer via the relay.
Time taken by the consumer to receive information from the producer is 217
microseconds.

- 47 -

5. Conclusions

In this report, real-time benchmarks developed at the Center for Software
Engineering [1] have been run on the DDC-I Ada compiler system targeted to the
Intel 80XXX family of microprocessors as well as on the self-hosted HP Ada compiler
for the HP 9000/350 computer. Extensive measurements have been made in the areas
of importance for real-tilne systems and the results analyzed. By running these
benchmarks on additional compilers, the validity of using this set of Real-time
benchmarks has been demonstrated and they have been proven to be portable to other
environments. The results produced by running the real-time benchmarks provide
valuable and useful information to programmers in evaluating compilers for real-time
applications. The results of the Real-time benchmarks in Appendix A also enable
users to compare the performance of different releases of the HP Ada compiler.

The performance of Ada systems is a complex subject and assessing and comparing
performance for real-time programming is a difficult task. The goal of the Real-time
benchmarks is to measure the performance of Ada features of importance for
programming real-time systems as well the Ada RTS implementation dependencies.
Although the benchmark programs are designed to avoid unnecessary and unwanted
operating system interference, there are certain basic functions of the operating
system that cannot be avoided in some cases (e.g. virtual memory support). It may
also be the case that no operating system is present, and the compiler’s RTS is
responsible for supporting all runtime functions. No matter how the support of the
runtime environment is implemented, the Real-time benchmarks are intended to
measure the performance of what is actually available to the user. The Real-time
benchmarks provide a set of benchmarks that are easily portable to other systems and
can be used to determine the performance of Ada real-time features.

(1]

(2]

(3]

(4]

[5)

[6]

[7]

[8]

(9

[10]

(11]
(12]

[13)

REFERENCES

CECOM Center for Software Engineering, "Real-time Performance
Benchmarks for Ada", C02-092LY-0001-00, Final Report delivered by Arvind
Goel, March 1989.

CECOM Center for Software Engineering, "Documentation for Real-time
Performance Benchmarks for Ada", C02-092LY-0002-00, Final Report
delivered by Arvind Goel, March 1989.

R.M. Clapp et al, "Towards Real-time Performance Benchmarks for Ada",
CACM, Vol. 29, No. 8, August 1986.

N. Altman, "Factors Causing Unexpected Variations in Ada Benchmarks",
Technical Report, CMU/SEI-87-TR-22, October 1987.

N. Altman et al., "Timing Variation in Dual Loop Benchmarks" , Technical
Report, CMU/SEI-87-TR-21, October 1987.

CECOM Center for Software Engineering, "Catalog of Ada Runtime
Implementation Dependencies”, C02 092LA 0001, Final report delivered by
LabTek (revised ARTEWG document), 15 Feb 1989.

"Catalog of Interface Features and Options for the Ada Runtime Environment
", ARTEWG Report, December, 1987.

M. D. Broido, "Toward Real-time Performance Benchmarks For Ada",
Technical Correspondence, CACM, Vol. 30, No. 2, February 1987.

L. MacLaren, "Evolving Toward Ada in Real-time Systems", Proceedings of
the ACM, SIGPLAN Symposium on the Ada Programming Language,
November, 1980.

N. Weiderman et al., "Ada for Embedded Systems: Issues and Questions",
Technical Report, CMU/SEI-87-TR-26, October 1987. '

SofTech Inc., "Real-time Ada", July, 1984.

A. Goel, E.-Wong, "Evaluation of Existing Benchmark Suites For Ada", Ada
Technology Conference Proceedings, Washington DC, March 15-20,1988.

CECOM Center for Software Engineering, "Establish and Evaluate Ada
Runtime Features of Interest for Real-time Systems", C02092L.A0003, Final
report delivered by IITRI, 15 Feb 1989.

(14]

(13]

[16]

[17]

(18]

-49.

"Proceedings of the International Workshop on Real-time Ada Issues", UK,
13-15 May, 1987, pages 10-11.

A. Tetewsky, A. Clough, R. Racine, R. Whittredge, "Mapping Ada onto
Embedded Systems:Memory Counstraints", Ada Letters, September/October,
1988.

Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) User’s Guide, Report D500-11790-2, Boeing Military Aerospaces, P.O.
Box 7730, Wichita, Kansas, 1988.

Ada Compiler Evaluation Capability (ACEC) Version Description Document,
Report D500-11790-3, Boeing Military Airplane, P.O. Box 7730, Wichita,
Kansas, 1988.

CECOM Center For Software Engineering, "Performance Measurements of
the CHS Ada Compiler", Final report delivered by Unixpros Inc., 15
December, 1989.

-50-

Appendix A: Execution Results For the HP Ada
Compiler

Appendix A presents the results of running the Real-time benchmarks on the HP Ada
Compiler (Releases 3.25 and 4.35) running on HP 9000/350 machine under HP-UX
Release 6.2. The hardware and software configuration is as follows:

HP Testbed Hardware and Software:

The hardware used for benchmarking was Hewlett-Packard 9000/350 CPU running
HP-UX V 6.2. The setup can be summarized as follows:

Host: HP 9000/350 running HP-UX V 6.2.

Compiler: Self-hosted HP (basically the Alsys Ada Compiler)
Ada Development System Version 3.25 and 4.35.

Target: Same as the host.

Tables 31 through 61 list the results of running the Real-time benchmarks on the HP
Ada compilers. Any observations about the results are presented below the
corresponding tables. A detailed description of the performance measurements of the
HP Ada compilers is presented in report [18].

-51-

TABLE 31. HP Results: Task/Activation Termination Benchmarks

Execution time in Microseconds

File Name | Benchmark Description HP325 | HP4.35
t00001.a Task type in main, object in block statement 14281.5 | 10079.2
t00001_1 Task object is declared directly in block statement | 141780 | 11089.0
t00001_2.a | Task type and object defined in package procedure | 14167.0 | 11010.0
t00001_3.a | Task type in package, object in package procedure | 13989.0 | 10890.0
t00001_4.a | Task type and object are declared in another task | 14267.0 | 11008.0
t00002.a Task type and array elaborated in a procedure 14389.0 | 11890.0
00002 1.a | Task type in package, array in procedure 14379.0 | 11870.0
t00002 2.a | Task type in main, array in package procedure 14567.0 | 12089.0
t00003.a Task object is declared as part of record 139800 | 10789.0
t00004.a Task access type in main, task created via new 14221.7 | 11682.2
t00004_l.a | Task accesstypein' .k, task created via new 14210.0 | 11689.0
t00004_2.a | Task access type in main, array created via new 142170 | 117900
t00005.a Task object in block statement, idle tasks=1 142340 | 116780
t00005_1.a | Task object in block statement, idle tasks=5 14567.0 | 11980.0
t00005 2.a | Task object in block statement, idle tasks=10 14678.0 | 11897.0
t00005_3.a | Task object in block statement, idle tasks=20 14789.0 | 11789.0
t00006.a Task created via new allocator, idle tasks=1 142200 | 11683.0
t00006_1.a | Task created via new allocator, idle tasks=5 14367.0 | 11768.0
t00006_2.a | Task created via new allocator, idle tasks=10 14456.0 | 11789.0
t00006_3.a | Task created via new allocator, idle tasks=20 14983.0 { 11834.0

« Results for the HP4.35 compiler show an improvement of nearly 4000 microseconds (30 %) for task
activation/termination timings for tasks not allocated via the new allocator.

« Results for the HP4.35 show an improvement of nearly 2500 microseconds (18 %) for task
activation/termination timings via the new operator.

|

-52-

» There is little effect on task activation/termination timings when the number of idle tasks increases.

-53-

TABLE 32. HP Results: Simple Rendezvous Benchmarks (No Parameters Passed)

Time in Microseconds

Name Description HP3.25 | HP4.35
r00001.a Procedure calls entry of task declared in main 17560 | 17020
r00001_1.a | Procedure calls entry in task created via new 1768.0 1697.0
r00001_2.a { Main calls entry in task decl in package 1778.0 1787.0
r00002.a Main calls two entries in two tasks decl in package 1769.0 1690.0
r00002_1.a | Main calls 10 entries in ten tasks decl in package 1806.0 1702.0
r00002_2.a | Main calls 10 entries in one task decl in package 1799.0 | 1708.0
r00003 Main calls 1st entry in select, 2 entries declared 26120 | 22480
r00003_1 Main calls last entry in select, 2 entries declared 2656.0 2260.0
100003_2.a | Main calls 1st entry in select, 10 entries decl 3389.0 | 2667.0
100003 3.a { Main calls last entry in select, 10 entries decl 3399.0 | 2697.0
100003 4.a | Main calls 6th entry in select, 10 entries decl 3395.0 2687.0
r00003_5 Main calls 1st entry in select, 20 entries declared 4022.0 3474.0
r00003 6 Main calls last entry in select, 20 entries declared 4058.0 3508.0
00003 _7 Main calls 11th entry in select, 20 entries declared 40240 | 34740
r00004.a Main calls 1st entry out of 2, 1st guard true next false 2612.0 2249.0
r00004_1.a | Main calls last entry out of 2, 1st guard false next true 2665.0 2259.0
100004 2.a | Main calls 1st entry out of 20, 1st guard true rest false 4021.0 3471.0
r00004_3.a | Main calls last entry out of 20, last guard true rest false 4059.0 | 3589.0
r00004_4.a | Main calls 11th entry out of 20, 11th guard true rest false | 4032.0 3491.0
r00004_5.a | Main calls 11th entry out of 20, all guards true 4056.0 3678.0

o For both the HP compilers, the timing for rendezvous is nearly the same for the scenarios in which
the main program calls ten entries in 10 different tasks or the main program calls 10 entries in one

task.

o The more the number of entries in a select statement, the more time it takes to rendezvous with

any entry in the select statement (for both the HP compilers).

-54 -

o Position of the accept in the select statement does not affect the rendezvous timings for both HP
compilers.

-55-

TABLE 33. HP Results: Complex Rendezvous Benchmarks

Time in Microseconds
Name Direction | Type and Size HP3.25 | HP4.35
Passed Number Passed
r00005_i In Integer Array 1 20700 | 1838.0
r00005_o Out Integer Array 1 2080.0 | 1870.0
r00005_io In Out Integer Array 1 2080.0 | 1870.0
r000051i | In Integer Array 1000 | 19740 | 1908.0
r00005_1 o | Out Integer Array 1000 | 19840 | 19240

100005 1 io | InOut | Integer Array | 1000 | 19840 | 19240

r000052i | In Integer Array 10000 | 19740 | 19080

r00005 2 o | Out Integer Array 10000 | 1984.0 1924.0

r00005_2 io | In Out Integer Array 10000 | 1984.0 | 1924.0

r000053i | In 1 Integer 20620 | 1816.0
r00005_3 o | Out 1 Integer 2069.0 | 1820.0
r00005_3 io | InQut 1 Integer 20690 | 1820.0
r000054i | In 10 Integers 20560 | 1818.0
r00005_4_ o | InOut 10 Integers 20780 | 1834.0
r00005_4 io | InOut 10 Integers 2780 | 1834.0
00005 5i | In 100 Integers 27840 | 1930.0
r00005_5 o | Out 100 Integers 27650 | 1996.0
r00005_5_io | In Out 100 Integers 27650 1996.0

» Rendezvous times indicate that arrays are passed by reference for both HP compilers.

o As far as passing integer parameters during a rendezvous, the HP compilers use pass by copy (as
the time for rendezvous increases with the increase in the number of integer parameters). Also, the
rendezvous time for mode in out parameters is gemerally more than the time required for
parameters of mode in.

-56-

o There is a significant improvement of 800 microseconds (30 %) for the HP4.35 compiler in
rendezvous timings when 100 integer parameters are passed during the rendezvous.

-57-

TABLE 34. HP Results: More Rendezvous Benchmarks

Execution time in microseconds

File Name Benchmark Description HP3.25 | HP4.35
r00006_1 1.a | 1st entry out of 2 called with 10 integers 2089.0 | 1823.0
r00006_1 2.a | 1st entry out of 2 called with 100 integers 27890 | 19780
r00006_2 1.a | Last entry out of 2 called with 10 integers 23780 | 19780
r00006 2 2.a | Last entry out of 2 called with 100 integers 28740 | 2456.0
r00006 3 1.a | 1stentry out of 10 called with 10 integers 3387.0 | 26780
r00006_3 2.a | 1st entry out of 10 called with 100 integers 35670 | 28900
100006 4 1.a | Last entry out of 10 called with 10 integers 34340 | 27600
r00006_4 2.a | Last entry out of 10 called with 100 integers 3690.0 | 28670
r00006_5_1.a | 1st entry out of 20 called with 10 integers 36450 | 28670
r00006 5 2.a | 1st entry out of 20 called with 100 integers 3789.0 | 28990
100006 6 1.a | Last entry out of 20 called with 10 integers 3900.0 | 2956.0
r00006_6_2.a | Last entry out of 20 called with 100 integers 3989.0 | 29780
r00007.a Overhead due to terminate alternative 289 1483
r00008.a Overhead of conditional entry call,rendezvous complete 50 48
r00008 1.a Overhead of conditional entry call,rendezvous incomplete | 25.0 21.0
r00009.a Overhead of timed entry call.rendezvous complete 59 49
r00009_1.a Overhead of timed entry callrendezvous incomplete 270 204
r00011.a Main calls an entry with 100 Integers,Idle tasks = 1 27840 1978.0
r00011_l.a Main calls entry with 100 Iategers,Idle tasks = 5 28760 | 1989.0
100011 2.a Main calls entry with 100 Integers,Idle tasks = 10 28770 | 19760
r00011_3.a Main calls entry with 100 Integers,Idle tasks = 20 29010 | 1999.0

-58-

TABLE 35. HP Results: Memory Allocation: Storage Allocated is Fixed

Time in Microseconds
Name Type Number | Size HP325 | HP435
Declared Declared

dd_inl Integer 1 0.8 02
dd_in10 Integer 10 58 26
dd_in100 Integer 100 216 200
dd_st1 String 1 1 1.0 10
dd st10 | String 1 10 16 10
dd_st100 String 1 100 32 22
dd_enl Enumeration 1 0.8 0.2
dd_en10 Enumeration 10 5.8 26
dd_en100 | Enumeration 100 216 200
dd_arl Array of Integer | 1 1 0.6 05
dd_ar10 Array of Integer | 1 10 0.6 05
dd_ar100 | Array of Integer | 1 100 0.6 0.6
dd_arik Array of Integer | 1 1000 0.6 0.6
dd ar10k | Array of Integer | 1 10000 | 0.6 0.6
dd_ar100k | Array of Integer | 1 100000 | 0.6 0.6

o For the HP Ada compilers, time required to allocate integer variables, enumeration variables,
strings and arrays of integers upon entering a subprogram is negligible.

-59.

TABLE 36. HP Results: Dynamic Memory Allocation: Storage Allocated is Variable

Time in Microseconds
Name Type Number | Size HP3.25 | HP4.35
Declared Declared | of Object

dd_id1 1-D Dynamically Bounded Array | 1 1 10.4 98
dd_1d10 | 1-D Dynamically Bounded Array |{ 1 10 10.6 10.2

dd 2d1 | 2-D Dynamically Bounded Array | 1 1 158 15.0
dd_2d10 | 2-D Dynamically Bounded Array | 1 100 15.6 14.8

dd 3d1 3-D Dynamically Bounded Array | 1 1 25.6 244
dd_3d1C | 3-D Dynamically Bounded Array | 1 1000 256 246

» Time required for allocating dynamically bounded arrays increased with the number of dimensions
for the HP Ada compilers.

-60-

TABLE 37. HP Results: Dynamic Memory Allocation with the NEW Allocator

Time in Microseconds

Name Type Declared Size of Object | HP3.25 | HP4.35
dn_inl Integer 1 200.0 80.0
dn_enl Enumeration 1 200.0 80.0
dn stl String 1 140.0 80.0
dn_st10 String 10 140.0 80.0
dn st100 | String 100 260.0 80.0
dn_arl Integer Array 1 1400 80.0
dn_ar10 Integer Array 10 160.0 80.0
dn arl00 | Integer Array 100 200 | 800
dn_arlk | Integer Array 1000 260.0 80.0
dn_rcl Integer Record 1 1400 80.0
dn rcl0 | Integer Record 10 160.0 80.0
dn rc100 | Integer Record 100 220.0 80.0
dn_1d1 1-D Dynamically Bounded Array | 1 2200 80.0
dn_1d10 | 1-D Dynamically Bounded Array | 10 280.0 100.0
dn_2d1 2-D Dynamically Bounded Array | 1 260.0 100.0
du_2d10 | 2-D Dynamically Bounded Array | 100 280.0 100.0
dn_3d1 3-D Dynamically Bounded Array | 1 260.0 120.0
dn_3d10 | 3-D Dynamically Bounded Array | 1000 280.0 120.0

» HP4.35 compiler takes at least 40% less time for memory allocation/deallocation via the new
allocator as compared to HP3.25 compiler.

-61-

TABLE 38. HP Results: New Allocator: No Storage Deallocation

Time in Microseconds

Name Type Declared Size of Object | HP3.25 | HP4.35
dn_inl Integer 1 210.0 850
dn_enl Enumeration 1 2100 85.0
dn_stl String 1 146.0 86.0
dn_st10 String 10 146.0 84.0
dn _st100 | String 100 264.0 83.0
dn_arl Integer Array 1 149.0 87.0
dn_ar10 | Integer Array 10 164.0 81.0
dn_ar100 | Integer Array 100 2230 82.0
dn_arlk | Integer Array 1000 264.0 85.0
dn_rci Integer Record 1 139.0 84.0
dn_rc10 Integer Record 10 161.0 89.0
dn rcl100 | Integer Record 100 220.0 80.0
dn_1d1 1-D Dynamically Bounded Array | 1 2230 89.0
dn_1d10 | 1-D Dynamically Bounded Array | 10 286.0 110.0
dn_2d1 2-D Dynamically Bounded Array | i 263.0 110.0
dn_2d10 | 2-D Dynamically Bounded Array | 100 279.0 104.0
dn_3d1 3-D Dynamically Bounded Array | 1 2640 129.0
dn 3d10 | 3-D Dynamically Bounded Array | 1000 2810 121.0

-62-

TABLE 39. HP Results: NEW Allocator:Active Tasks = §

Execution time in microseconds

File Type Number | Size of | FP325 | HP435
Name Declared Declared | Object

dn st100.a | String 1 100 260.0 80.0
dn_arlk.a | Integer Array 1 1000 260.0 80.0
dn_rc100.a | Record of Integer 1 100 2200 80.0
dn_1d10.a | 1-D Dynamically Bounded Array | 1 10 280.0 100.0
dn_2d10.a | 2-D Dynamically Bounded Array | 1 100 280.0 1000
dn_3d10.a | 3-D Dynamically Bounded Array | 1 1000 280.0 120.0

-63-

TABLE 40. HP Resuits: NEW Allocator:Active Tasks = 10

Execution time in microseconds

File Type Number | Size of | HP3.25 { HP4.35
Name Declared Declared | Object

dn_st100.a | String 1 100 260.0 80.0
dn_arik.a | Integer Array 1 1000 260.0 80.0
dn_rc100.a | Record of Integer 1 100 2200 80.0
dn_1d10.a | 1-D Dynamically Bounded Array | 1 10 280.0 100.0
dn_2d10.a | 2-D Dynamically Bounded Array | 1 100 280.0 100.0
dn 3d10.a | 3-D Dynamically Bounded Array | 1 1000 280.0 120.0

« Results show negligible effect of idle tasks on fnumory allocation/deallocation timings.

TABLE 41. HP Results: Exception Raised/Handled in Block - HP3.25

Execution time in microseconds

File Exception | User Constraint | Constraint | Numeric { Numeric
Name not raised | defined | _error _error _error _error
explicit | explicit implicit explicit | implicit
€00001.a 12 21345 | 2189.0 22340 2349.0 2136.0
€00001_1.a | 13 21445 | 21990 2540 2379.0 2186.0
€00001 2.a | 13 21495 | 21910 2258.0 2389.0 218%9.0

-65-

TABLE 42, HP Results: Exception Raised/Handled in Block - HP4.35

Execution time in microseconds

File Exception | User Constraint | Constraint | Numeric | Numeric
Name not raised | defined | _error _error _error _error
explicit | explicit implicit explicit implicit
€00001.a 12 14076 | 1456.0 1501.0 1489.0 1478.0
€00001_1.a | 1.2 14276 | 1476.0 1511.0 1499.0 1488.0
€00001 2.a | 1.2 14376 | 1479.0 1515.0 1491.0 1489.0

o HP4.35 shown an improvement of about 25% over the HP3.25 compiler for exception handling

- 66 -

TABLE 43. HP Results: Exception Raised/Handled One Level Above - HP3.25

Execution time in microseconds

File Exception | User Constraint | Constraint | Numeric { Numeric
Name not raised | defined | _error _error _error _error
explicit | explicit implicit explicit implicit
€00001.a 12 29345 | 2989.0 3034.0 3249.0 3036.0
€00001_1.a | 13 3044.5 | 3099.0 3054.0 3279.0 3086.0
€00001 2.a | 13 3049.5 | 30910 3058.0 3289.0 3089.0

« Time to propagate an exception one level above is “950 microseconds for the HP3.25 compiler.

-67-

TABLE 44. HP Results: Exception Raised/Handled One Level Above - HP4.35

Execution time in microseconds

File Exception | User Constraint | Constraint | Numeric | Numeric
Name not raised | defined | _error _error _error _error
explicit | explicit implicit explicit | implicit
€00001.2 12 22076 | 22560 23010 22890 2278.0
€00001_la | 1.2 22276 | 22760 23110 2299.0 2288.0
€00001 2.a | 1.2 2376 | 22790 2315.0 2291.0 2289.0

« Time to propagate an exception one level above is “850 microseconds for the HP4.35 compiler.

- 68 -

TABLE 45. HP Results: Tasking Error Exception Benchmarks

Execution time in microseconds

File Name | Benchmark Description HP3.25 | HP4.35
€00005.a Exception Raised in rendezvous,0 idle tasks 8331.0 | 53080
€00005_L.a | Exception Raised in rendezvous,5 idle tasks 83330 | 54080
€00005_2.a | Exception Raised in rendezvous,10 idle tasks 8343.0 | 5309.0
€00006.a Child task has error during elaboration,0 idle tasks | 84560 | 5345.0
€00006_1.a | Child task has error during claboration,5 idle tasks | 8467.0 | 5347.0
€00006_2.a | Child task has error during elaboration,10 idle tasks | 8499.0 | 5434.0

-69-

TABLE 46. HP Results: Chapter 13 Benchmarks

Execution time in microseconds

File Name | Benchmark Description HP3.25 | HP435
h00001.a Boolean operations on arrays,Pragma * .CK 145 4.7
h00001_1.a | Boolean operations on arrays,Rep Clause 149 56
h00001_2.a | Boolean operations on arrays,not packed 15.6 159
h00002.a Boolean operations on array components,Pragma Pack 230 79
h00002_1.a | Boolean operations on array components,Rep Clause 269 81
h00002 2.a | Boolean operations on array components,not packed 119 78
h00003.a Assignment,comparison on arrays of booleans,Pragma PACK | 103 46
h00003_1.a | Assignment,comparison on boolean arrays,Rep Clause 115 49
h00003 2.a | Assignment,comparison on boolean arrays,not packed 179 79
h00004.a Assign,compare whole records,no rep clause 82 87
h00004 1.a | Assign, compare whole records,rep clause 89 45
h00004_2.a | Assign, compare whole records,Pragma PACK 9.6 6.7
h00005.a Unchecked_conversion, Integer object to another 09 08
h00005_1.a | Unchecked conversion, String to Integer 12 11
h00005_2.a | Unchecked conversion,Floating array to record 19 21
h00006.a Store, extract record bit fields, no rep clause 112 7.6
h00006_1.a | Store, extract record bit fields, rep clause 134 9.7
h00006 2.a | Store, extract record bit fields, rep clause 142 10.1
h00008.2 Store, extract record bit fields defined 13.8 8.1
by nested rep clauses using packed arrays
h00009.a Change of representation from one record to another 12.1 48
h00010.a POS,SUCC, and PRED operations on enum type with rep 19.1 132
clause numbered with gaps in internal coding
h00010 1.a | POS,SUCC, and PRED operations on enum type with rep 231 112

clause numbered with no gaps in internal coding

-70 -

TABLE 47. HP Resuits: CLOCK Function Tests

Execution time in microseconds

File Name | Benchmark Description HP3.25 | HP4.35
c00001.a CLOCK function overhead | 11343 1220.1
¢00002.a CLOCK resolution 100.0 100.0

-71-

TABLE 48. HP Results: TIME and DURATION Mathematics

Execution time in microseconds

File Operation HP3.25 | HP435
Name | Performed

tmla | Time = Var_time + Var_duration 23 23
tm2.a | Time = Var_time + Const_duration 217 29
tm3.a | Time = Var_duration + Var_time 22 21
tm4.a | Time = Const_duration + Var_time 23 29
tm5.a | Time = Var_time - Var_duration 2.7 20
tm6.a | Time = Var_time - Const_duration 23 21 .
tm7.a | Duration = Var_time - Var_time 24 23
tm8.a | Duration = Var_duration + var_duration 24 21
tm9.a | Duration = Var_duration + Const_duration 25 22
tmi0.a | Duration = Const_duration + Var_duration 24 21
tm12.a | Duration = Const_duration + Const_duration | 2.6 22
tm12.a | Duration = Var_duration - Var_duration 25 21
tm13.a | Duration = Var_duration - Const_duration 24 21
tm14.a | Duration = Const_duration - Var_duration 25 22
tml5.a | Duration = Const_duration - Const_duration | 2.6 22

-72-

TABLE 49. HP Results: Numeric Computation Benchmarks

Execution time in microseconds

File Operation HP3.25 | HP4.35
Name | Performed

tml16.a | Float Matrix Multiplication | 995.0 845.0
tm17.a | Float Matrix Addition 9014 924.0
tm18.a | Factorial Calculation 105.0 139.0
tm19.a | Square root calculation 456.0 398.0

-73-

TABLE 50. HP Results: Subprogram Overhead (Intra-Package)

Time in Microseconds

HP3.25 HP435
Name Parameter Type Number Passed | Size
In {Out | [nOut | In | Out | InOut
dn 0 20 20

dil Integer 1 4.0 5.0 6.0 4.0 50 6.0
di1o Integer 10 80 | 100 120 80 | 10.0 120
d_i 100 Integer 100 62.0 | 660 | 1180 | 640 | 680 | 1240

dal Array of Integer 1 1 20 | 20 20 20 | 20 20

dal0 Array of Integer 1 10 20 20 20 20 20 20

d_a 100 Array of Integer 1 100 40 | 60 6.0 60 | 60 8.0

d_a 10k Array of Integer 1 10000 | 2.0 | 20 20 20 | 20 20

dual Unconstrained array 1 1 20 | 40 40 40 | 40 20

d_u_a 100 | Unconstrained array 1 100 20 20 20 40 40 4.0

d_u_a 10k | Unconstrained array 1 10000 | 4.0 | 20 4.0 40 | 40 4.0

o For parameters of type integer, subprogram overhead for variables of mode out and in out is
greater than that of mode in. This is because of the additional overhead involved in copying back
the parameters of mode out and in out when returning from the procedure call. However, the

overhead for passing 100 integers of mode in out is twice as much (124 microseconds) for 100

integers of mode out for both the HF compilers.

o The overhead for passing 100 integers is higher than the overhead for passing 1 integer (due to the
time required for copying the integers on the stack when the procedure call is made).

« The timings for arrays of integer indicate that it is passed by reference. (as pass by reference times
do not vary with the length of the array passed).

o The timings for unconstrained array types suggest that there is very little extra overhead in passing

the constraint information in the procedure call.

TABLE 51. HP Results: Subprogram Overhead (Intra-Package with Pragma INLINE)

Time in Microseconds
HP3.25 HP435
Name Parameter Type Number Passed | Size
In | Out | InOut | In | Out | InOut
in 0 20 21
iil Integer 1 20 | 20 20 20) 20 20
ii 10 Integer 10 61 | 82 121 60 | 30 120
ii 100 Integer 100 610 | 650 | 1220 | 600 | 660 | 1200
ial Array of Integer 1 1 19 | 21 2.2 20 | 20 21
ia 10 Array of Integer 1 10 18 | 21 21 20 | 20 20
i_a 100 Array of Integer 1 100 19 | 20 21 20 | 20 20
i_a_10k Array of Integer 1 10000 } 20 | 21 21 20 | 20 2.0
iual | Unconstrained array 1 1 29 | 28 23 27 | 27 217
i_u_a_100 | Unconstrained array 1 100 29 | 28 238 27 | 26 217
l i_u_a 10k | Un_onstrained array 1 10000 | 2.7 | 28 29 26 | 27 27

« The timings indicate that procedure calls with pragma INLINE execute faster than procedures
without pragma INLINE.

-75-

TABLE 52. HP Results: Subprogram Overhead (Inter-Package)

Time in Microseconds

HP3.25 HP4.35
Name Parameter Type Number Passed | Size
In [Out | [nOut | In | Out | InOut
i pn 0 20 20

pil Integer 1 40 | 40 6.0 40 | 40 6.0

p_i 10 Integer 10 80 | 100 12.0 80 | 60 120
p_i_100 Integer 100 62.0 | 56.0 | 1180 | 64.0 | 60.0 | 1240

pal Array of Integer 1 1 2.0 2.0 2.0 2.0 2.0 20

p_a_10 Array of Integer 1 10 20 § 20 2.0 20 | 20 20

p_a_l100 Array of Integer 1 100 40 | 60 6.0 60 | 60 8.0

p_a 10k Array of Integer 1 10000 | 2.0 | Zu 20 20 | 20 20

p_ual | Unconstrained array 1 1 20 | 40 40 40 | 4.0 20

p_u_a_100 | Unconstrained array 1 100 20 | 20 20 40 | 40 4.0

p_u_a 10k | Unconstrained array 1 10000 | 40 | 20 40 40 40 4.0

e The results indicate that there is no extra overhead between inter-package subprogram call as

opposed to intra-package subprogram calls.

-76 -

TABLE 53. HP Results: Subprogram Overhead (Intra-Package with Generic Instantiations)

Time in Microseconds
HP3.25 HP435
Name Parameter Type | Number Passed | Size
In { Out [[nOut | In | Out | InOut
gnc 0 2.0 20
gilc Integer 1 40 | 40 | 60 | 40 | 40 | 50
gil0c Integer 10 80 | 80 18.0 80 | 80 18.0
g 1100 c Integer 100 600 | 68.0 | 1300 | 660 | 680 | 1140
g a_l c | Arrayof Integer 1 1 60 | 80 8.0 60 | 80 8.0
g a_10 ¢ | Array of Integer 1 10 80 | 100 100 80 | 100 | 100
g a_100_c | Array of Integer 1 100 | 120 | 140 150 | 110 { 130 | 140
g a 10k c | Array of Integer 1 10000 | 12.0 | 140 14.0 12.0 | 140 14.0

o For integer parameters, the timings are compatible for intra-package with generic instantiations as
opposed to without generic instantiations.

o For arrays of integers, there is an increase of more than 50% for intra-package with generic

instantiations as opposed to without generic instantiations.

-77-

TABLE 54. HP Results: Subprogram Overhead (Inter-Package with Generic Instantiations)

Time in Microseconds
HP3.25 HP4.35
Name | Parameter Type | Number | Size
In Out In Out In Out In Qut
cn 0 20 20

cil Integer 1 4.0 6.0 6.0 20 4.0 6.0
ci 10 Integer 10 8.0 8.0 18.0 80 8.0 18.0
c_i 100 Integer 100 60.0 68.0 1320 75.0 790 119.0

cal Array of Integer 1 1 10.0 100 14.0 4.0 6.0 6.0
c_a 10 | Array of Integer 1 10 220 26.0 48.0 12.0 14.0 200
c_a_100 | Array of Integer 1 100 2200 236.0 408.0 720 80.0 1440
c_a_10k | Array of Integer 1 10000 | 23362.0 | 23958.0 | 49526.0 | 9360.0 | 9556.0 { 20744.0

o For integer arrays of size 100 or more, there is a big difference in the times without generic
instantiations and with generic instantiations: 49526 (20744) microseconds for the HP3.25 (HP4.35)
compiler with generic instantiation as opposed to 2.0 (2.0) microseconds without generic

instantiation for an array of 10000 integers (with mode in out). This indicates that inter-package

calls with generic instantiation are extremely inefficient on the HP compilers as opposed to inter-

package calls without generic instantiation.

o The HP4.35 compiler has an improvement of more than 100% for these timings as opposed to the
HP3.25 compiler.

-78 -

TABLE 55. HP Results: Pragma Benchmarks

File Name Benchmark Description HP3.25 HP4.35
pr00001.a Pragma SUPPRESS used for Overflow_Check,

Division_Check, and Range Check 19.1 203
pr00001_l.a | Pragma SUPPRESS used for Access_Check 123 134
pr00001_2.a | Pragma SUPPRESS used for Index_Check 329 298

and Length Check
pr00001 3.2 { Pragma SUPPRESS used for STORAGE_CHECK 34 39
pr00001 4.a | Pragma SUPPRESS used for ELABORATION CHECK | No response
pr00001 5.a | Pragma SUPPRESS used for INDEX CHECK 264 219
pr00002.a Pragma CONTROLLED used for access type No effect No effect
pr00003.a Pragma SHARED,shared integer updated No effect No effect
pr00003_1.a | Pragma SHARED,shared integer updated No effect No effect

during rendezvous

o The results indicate that Pragma SUPPRESS improves the execution timings for both the HP

compilers.

e Pragms CONTROLLED and SHARED are not implemented for the HP Ada compilers.

-79-

TABLE 56. HP Results: Input/OQutput Benchmarks

Execution Time in Milliseconds
File Name | Benchmark Description HP325 | HP4.35
io00001.a | Create output file and copy characters 2169.0 | 2121.0

i000002.a | Create output file, copy data using ENUMERATION 10 | 22450 | 2189.0

i000003.a | Create output file, copy data using INTEGER_IO 23450 | 22350
io00004.a | Create output file, copy data using FLOAT IO 2509.0 | 2470.0
i000005.a | Create output file, copy data using FIXED 10 24570 | 23460

-80-

TABLE 57. HP Results: Tasking Implementation Benchmarks

File Name | Benchmark Description HP3.25 HP4.35
rt_t001.a Is task space deallocated on return from procedure | Yes Yes
on task termination
rt_t002.a Is task space deallocated upon task termination Yes Yes
when access type is declared in library unit
rt_t003.a Determine order of elaboration when several tasks | See See
are activated below below
rt_t004.a Can a task continue execution after its activation but | Yes Yes
prior to completion of activation of tasks declared
in the same declarative part
rt_t005.a If allocation of task raises STORAGE_ERROR Task Task
when is exception raised Activation | Activation
rt_t006.a What happens to tasks declared in a library Do not Do not
package when main task terminates terminate terminate
rt_t007.a Print default attribute STORAGE_SIZE 16916 bytes | 11796 bytes
and SIZE for tasks objects 16 bytes 16 bytes
rt_t008.a Order of evaluation of tasks in See See
abort statement below below

rt_t003.a There is no set order of elaboration when several tasks are activated for both the HP3.25 and

HP4.35 Ada compilers.

rt_t008.a Tasks are aborted in the order that they are named in the abort statement for both the HP

compilers.

—

-81-

TABLE 58. HP Results: Rendezvous Implementation Benchmarks

File Name | Benchmark Description

it 100L.a | Choosing among branches of selective wait statement

rt_r002.a Evaluation of guard conditions in a selective wait

rt_r003.a Method to select from delay alternatives of the same delay
in selective wait

rt_r004.a When expressions of an open delay alternative or entry
family index in an open accept alternative are evaluated

rt_r005.a Priority of a task with no explicit priority specified

rt_r006.a Priority of a rendezvous between two tasks which have
no explicit priorities specified

nt_r001.a: No set algorithm for both the HP compilers.

nt_r002.a: Evaluation occurs in the order that they are declared in the select statement for both HP
compilers.

nt_r003.a: No set algorithm for both the HP compilers.

rt_r004.a: The HP compilers always evaluates the expressions of an open delay statement before a
selection is made.

rnt_r005.a Lowest priority for both the HP compilers.

rt_r006.a Lowest priority for both the HP compilers.

e

-82-

TABLE 59. HP Results: Scheduling and Delay Statement Dependencies

File Name | Benchmark Description HP325 | HP435
dt00001.a Determine minimum delay time 0.02sec | 0.02sec
dt00002.a | Determine if user tasks are pre-emptive Yes Yes
dt00003.a | Determine method to share processor within | See See
each priority level below below
dt00004.a | Does delay 0.0 cause scheduling No No

dt00003.a: The scheduling facility in the Ada runtime is priority-based. If a task is available (queued) to
run at a certain priority, the scheduler will choose it over tasks of lower priority when the scheduler is
entered. The scheduler is entered whenever a task is to be descheduled. A task can be descheduled
for any of the following reasons:

o completion of its time slice
» waiting for a rendezvous

executing a delay statement

» waiting for the completion of I/O

a higher priority task becomes schedulable because a delay statement expires.

In addition, at a variety of points at which the excution of a task requires entry into the Ada runtime,
the Ada runtime itself checks to see that the currently-scheduled task is still the task of highest
available priority; if not, the task will be descheduled. The points at which the scheduler checks for a
higher priority task include rendezvous, delay, I/O, heap operations, and (because they engender heap
operations) some string operations.

TABLE 60. HP Results: Memory Management Dependencies

File Name Benchmark Description HP325 | HP4.35
m00002.a Is Unchecked Deallocation implemented Yes Yes
m00003.a Garbage Collection performed on fly No No
m00003_La

m00004.a Garbage Collection performed on scope exit | No No

ty

TABLE 61. HP Results: Real-time Paradigms

File Name Benchmark Description HP325 | HP435

pa0000L.a Simple producer consumer transaction 18790 | 1796.0
with main calling consumer task

pa00001_l1.a | Simple producer consumer transaction with 23100 | 2109.0
consumer using selective wait

pa00001_2.a | Simple producer consumer transaction with 1867.0 | 17820
producer task calling consumer task

pa00001_3.a | producer task communicates with consumer task 51700 | 48670
through a bounded buffer

pa00001_4.a | producer task communicates with consumer task 64230 | 61230
indirectly through a bounded buffer with a
transporter between buffer and consumer

pa00001_5.a | producer task communicates with consumer task 85340 | 81670
indirectly through a bounded buffer with a
transporter between buffer and producer as well as
transporter between buffer and consumer

pa00001_6.a | Producer task communicates with a 33450 | 3196.0
consumer via relay

pa00002.a Monitor using semaphores 27860 | 2421.0

pa00002_l1.a | Monitor using rendezvous 91980 | 9002.0

pa0C002_2.a | Monitor using rendezvous 19560 | 1867.0

pa00004.a Abort a task and create a new one 27879.0 | 218340

